Contents

Los kits de conducción automática para tractores son un hito en la agricultura de precisión. Estos  dispositivos integran tecnologías de GPS, sensores y software avanzado para permitir que los tractores  operen sin intervención humana directa. 

La precisión en la siembra, fertilización y cosecha se incrementa notablemente, reduciendo el desperdicio y optimizando el uso de recursos. Con la implementación de estos kits, los agricultores pueden  monitorear y gestionar sus campos en tiempo real, mejorando la eficiencia y la sostenibilidad de sus operaciones. Además, estas herramientas contribuyen a una agricultura más rentable y respetuosa con el medio ambiente.

Con la dirección del vehículo que utiliza deep learning basado en visión, se podrán diferenciar los cultivos y malezas, para reducir el uso de fertilizantes y herbicidas y maximizar los rendimientos. Control remoto y modo no tripulado (opcional) permiten controlar al vehículo de forma remota o ingresar al modo totalmente autónomo.

Posicionamiento con precisión permiten controlar al vehículo de forma remota o ingresar al modo totalmente autónomo.

La agricultura de precisión tiene como objeto optimizar la gestión de una parcela desde el punto de vista

  • Agronómica: ajuste de las prácticas de cultivo a las necesidades de la planta (ej: satisfacción de las necesidades de nitrógeno).
  • Medioambiental: reducción del impacto vinculado a la actividad agrícola (ej: limitaciones de la dispersión del nitrógeno).
  • Económico: aumento de la competitividad a través de una mayor eficacia de las prácticas (ej: mejora de la gestión del coste del estiércol nitrogenado).

Además, la agricultura de precisión pone a disposición del agricultor numerosas informaciones que pueden:

  • Constituir una memoria real del campo.
  • Ayudar a la toma de decisiones.
  • Ir en la dirección de las necesidades de trazabilidad.
  • Mejorar la calidad intrínseca de los productos agrícolas (ejemplo: índice de proteínas en el caso de los trigos panificables).

Las etapas y los instrumentos

Geolocalización

La geolocalización de la parcela permite superponer sobre esta última las informaciones disponibles: análisis del suelo, análisis de los restos nitrogenados, cultivos anteriores, resistividad de los suelos. La geolocalización se efectúa de dos formas:

  • delimitación física con ayuda de un GPS a bordo, lo que requiere el desplazamiento del operador hasta la parcela;
  • delimitación cartográfica tomando como base una imagen aérea o satelital. Para garantizar la precisión de la geolocalización, estas imágenes de fondo deben adaptarse en términos de resolución y de calidad geométrica.

Características e información

Los orígenes de la variabilidad son diversos: el clima (granizo, sequía, lluvia, etc.), el suelo (textura, profundidad, contenido de nitrógeno fósforo y potasio), prácticas de cultivo (siembra sin labranza), malas hierbas, enfermedades.

Varios indicadores permanentes (principalmente relacionados con el suelo) permiten al agricultor mantenerse informado sobre las principales constantes del entorno.

Otros indicadores puntuales lo mantienen informado sobre el estado actual del cultivo (desarrollo de enfermedades, estrés hídrico, estrés nitrogenado, encamado, daños provocados por las heladas, etc.).

Las informaciones pueden proceder de estaciones meteorológicas, de sensores (resistividad eléctrica del suelo, detección a simple vista, imágenes satelitales, etc.).

La medición de la resistividad, completada mediante análisis pedológicos, desemboca en mapas agropedológicos precisos que permiten tomar en cuenta el entorno.

La toma de decisiones: dos estrategias que se pueden adoptar frente las características

A partir de los mapas agropedológicos, la decisión sobre la modulación de los insumos en la parcela se efectúa en función de dos estrategias:

  • el enfoque preventivo: se basa en un análisis de los indicadores estáticos durante la campaña (el suelo, la resistividad, el historial de la parcela, etc.),
  • el enfoque de gestión: el enfoque preventivo se actualiza gracias a mediciones periódicas durante la campaña. Estas mediciones se efectúan:
    • mediante muestras físicas: peso de la biomasa, contenido en clorofila de las hojas, peso de las frutas, etc.,
    • mediante proxy-detección: sensores a bordo de las máquinas para medir el estado del follaje pero que requieren la agrimensura total de la parcela,
    • mediante teledetección aérea o satelital: se adquieren imágenes multiespectrales y se tratan de forma que se puedan elaborar mapas que representen diferentes parámetros biofísicos de los cultivos.

La decisión puede basarse en Sistemas de soporte a decisiones (modelos agronómicos de simulación de los cultivos y modelos de preconización, por ejemplo DSSAT), pero depende ante todo del agricultor, en función del interés económico y del impacto sobre el medioambiente.

La agricultura de precisión en el mundo

El concepto de agricultura de precisión, en su forma actual, apareció en Estados Unidos a principios de los años 80. En 1985, investigadores de la Universidad de Minnesota, hicieron variar las aportaciones de abonos cálcicos en parcelas agrícolas. Fue en esta época cuando apareció la práctica del grid-sampling (recogida de muestras sobre una red fija de un punto por hectárea). Hacia finales de los años 80 y gracias a las extracciones realizadas mediante muestras, aparecieron los primeros mapas de preconización para las aportaciones moduladas de elementos fertilizados y para las correcciones de pH.

La evolución de las tecnologías permitió el desarrollo de sensores de rendimiento y su uso, unido a la aparición del GPS, no ha dejado de crecer hasta alcanzar en la actualidad varios millones de hectáreas cubiertos por estos sistemas.

A través del mundo, la agricultura de precisión se desarrolla a ritmos diferentes en función de los países. Entre los países pioneros encontramos, por supuesto, a los Estados Unidos, a Canadá y Australia. El país de América Latina más involucrado con esta metodología de manejo de cultivos, tanto en tasa de adopción, como en desarrollo de agro-componentes de alta complejidad es sin lugar a dudas la República Argentina, país que gracias a los esfuerzos del sector privado y de instituciones de investigación de dependencia oficial, cuenta hoy con una gran cantidad de superficie sembrada bajo esta modalidad y con una importante cantidad de profesionales muy bien entrenados para este nuevo paradigma de la agricultura moderna.

En 1995 se aplicó por primera vez la innovación tecnológica en la producción de granos en la EEA Manfredi del Instituto Nacional de Tecnología Agropecuaria INTA, quienes realizaron un mapa argentino de rendimiento de una cosecha de granos. Otro país de América Latina que se perfila como un gran demandante de este tipo de tecnologías es Brasil.

El escenario actual de la agricultura en Brasil camina hacia una producción eficiente con la protección del medio ambiente por lo tanto, Embrapa estableció la Red Brasileña de Investigación en Agricultura de Precisión, con el objetivo de generación de conocimientos, herramientas y tecnologías para la agricultura de precisión aplicada a los cultivos de soja, maíz, trigo, arroz, algodón, pastos, eucaliptos, pinos, uva, melocotón, naranja y caña de azúcar.

By Cesar Luis Aguero

Bachiller con Orientación Rural en Centro Educativo para la Producción Total N3 pje Don Alfredo, Emprendedor, Diplomado en Periodismo Digital, conocimiento en BPM, POES, coordinador de eventos sociales, compras insumos, Runner.

Dejá una respuesta

Infocabildo